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Triggering synchronized oscillations through arbitrarily weak diversity
in close-to-threshold excitable media
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It is shown that an arbitrarily weak~frozen! heterogeneity can induce global synchronized oscillations in
excitable media close to threshold. The work is carried out on networks of coupled van der Pol–FitzHugh–
Nagumo oscillators. The result is shown to be robust against the presence of internal dynamical noise.
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Emergent synchronized oscillations is a key subject i
variety of fields ranging from physics to biology or medic
sciences. In the last few years several papers have been
lished concerned with the possibility of triggering global o
cillatory behavior through heterogeneity and/or internal~dy-
namical! noise in the excitable medium@1–7#. Although
these works are a significant step towards the understan
of emergent oscillatory behavior, many points remain u
clear. For instance, in Ref.@3# a model was proposed t
investigate emergent oscillations in pancreaticb cells @8#, in
which half of the elements was in the silent phase while
other half was continuously active. Although the approa
gave clean globally synchronized oscillations, it is doubt
whether such asymmetricarrangement may have any bio
logical meaning. The combined effects of diversity@1–3#
and internal dynamical noise@5,9,10# have also been inves
tigated@4,6,11,12#. While a common conclusion seems to
the significant role of dynamical noise in triggering glob
oscillations, a key point such as the size dependence o
results was not investigated in detail. Here we start fr
Cartwright approach@3# and explore the possibility of syn
chronization as a function of the amount of diversity~frac-
tion of diverse elements!. We show that, as the system a
proaches threshold for oscillatory behavior, the number
diverse elements required to trigger global oscillations
comes arbitrarily small. This is particularly appealing from
biological point of view as the possibility of having a sma
number of cells different from the rest is always there. W
also show that these results are not significantly affected
internal dynamical noise.

We base our analysis upon the van der Pol–FitzHug
Nagumo equations@13–16# that, as discussed in Ref.@3#, are
an adequate mathematical description of the circuit mo
~which involves a capacitor, a nonlinear resistance across
capacitor, an inductance, and a resistance! commonly used to
represent a physiological excitable medium. Including firs
nearest-neighbors coupling between the elements in the
work @3,17,18#, the equations are written as

ċ i5g~f i2c i
3/31c i !, ~1a!
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ḟ i52g21@c i1$n i1n0h~ t !%1bf i #1k(
j

~c j2c i !,

~1b!

wherei runs overN elements in the network and the sum
j is extended to first-nearest neighbors. All constants
variables are dimensionless. Variablesc and f are propor-
tional to the potential across the nonlinear resistance~cell
membrane! and the current through the supply, respective
The subindexi indicates an element in the network. Th
constantn is proportional to the potential supplied,b to the
~membrane! resistance, andg to the square root of the quo
tient inductance/capacitance. The coupling between the
ments in the network is accounted for byk ~see@3# for a
thorough discussion!. In the model we allow parametern to
be different on each elementi of the network and to fluctuate
dynamically@h(t) is a Gaussian noise andn0 a constant#.

In order to quantify the emergence of oscillatory behav
we calculate the spatiotemporal average of variablec,
namely,

so5A 1

N~ t f2t i !
(
j 51

N

(
t5t i

t f

@c j
2~ t !2^c j~ t !&2#, ~2!

where^c j (t)& represents the temporal average of thejth po-
tential.The initial timet i is chosen so that the contribution o
transients to the average is minimized~note that forn near
threshold the transient can be very long, see below! while t f
is taken to cover a sufficiently large number of periods of
system in its oscillatory phase~for the values of the param
eters given below, the internal period varies around 10!.

Synchronization was in its turn evaluated by calculati
the following average:

ss5A 1

~N21!~ t f2t i !
(
j 52

N

(
t5t i

t f

@c j~ t !2c1~ t !#2, ~3!

where site ‘‘1’’ was randomly chosen. We could have e
tended the sum to all pairs of elements^ i j & but this would
have prohibitively increased computation time in large n
works. Note that usingss to test synchronization is far mor
©2001 The American Physical Society01-1
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demanding than most tests used in previous analyses. In
~2! and~3! the discrete sum int clearly accounts for~numeri-
cal! time averages.

In the following we takeb50.5 andg52 and vary the
remaining parameters. In particular we investigate, fo
givenn, how so andss vary with the fractionx of elements
with 2n ~hereafter referred to as impurity elements or, si
ply, impurities! distributed randomly in the network. In th
absence of both internal noise (n050) and coupling (k
50), oscillatory behavior occurs forunu,nc50.604 12~for
the values ofb and g chosen here, see@3#!. Calculations
were carried out onL3L clusters (L510–40) with periodic
boundary conditions and an integration stepDt50.002.

In Fig. 1 we plot the spatial average ofc for 10310
networks withn50.62 on all elements but two that haven
520.62, with and without coupling~in the former casek
50.5). First we note that, as remarked above, the station
state in the uncoupled case is only reached after rather
times (t.100). Instead, in the coupled case the transien
very short and the system soon shows a coherent oscilla
behavior. Importantly, the existence of emergent oscillati
do not depend on the actual location of impurity elements
Fig. 2 we show the averagec over the network and over five
realizations of quenched disorder~different spatial configu-
ration of impurities!. As the period of oscillation is weakly
dependent on the location of impurity elements, the resul
pattern is a typical sum of oscillators with slightly differe
periods. It is interesting to note that even in the case that
two impurities lie at neighboring sites, global persistent
cillations emerge upon coupling. The results of Fig. 1
truly remarkable as global oscillations are promoted by
very weak diversity~2% in this case!. Some characteristic
of this central result are discussed in detail hereafter.

Figures 3 and 4 show the parameters that characterize
emergence of oscillation and synchronization (so and ss),
vs the fractionx of impurities, forn51.0 and 0.61, i.e., far

FIG. 1. Variablec as a function of time in a 10310 network of
van der Pol–FitzHugh–Nagumo elements withb50.5,g52 and
n50.62 for all elements but two withn520.62 located at random
in the network. For those values ofb and g the threshold for os-
cillatory behavior in an isolated element occurs atnc50.604 12.
The results correspond to no coupling between the elemenk
50.0 ~thick continuous line! and fork50.5 ~thin line!. In the latter
case the average ofc over the whole network is shown.
01290
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and close to threshold, respectively. The results corresp
to networks of linear sizeL520 and 40 with coupling con-
stantk52 and 8 forL520 and 40, respectively. This choic
was motivated by the scaling argument of Ref.@6# ~see also
@11# and the discussion below!, according to which one ob
tains solutions with similar properties in two systems of li
ear sizeL and aL if the diffusive coupling constant of the
latter is increased by a factora2 ~apart from border effects!.
Averages were taken over five realizations~some checks
with up to 20 realizations led to similar results! and in the
time ranget5200–600. First we discuss the results witho

FIG. 2. Variablec as a function of time in networks with the
same parameters of Fig. 1 andk50.5. The result represents a
average over the whole network and over five realizations~each
corresponding to a random spatial distribution of the two eleme
with n520.62).

FIG. 3. Filled symbols: Parameter used to quantify the em
gence of oscillatory behavior, as defined in Eq.~2!, in a heteroge-
neous excitable media described by Eq.~1! with n50.61 vs the
fraction of elementsx in the network withn520.61 ~averages
were done over five realizations of the disordered network!. The
numerical results correspond to networks of size 20320 and
40340 ~symbol size proportional to the linear size of the networ!.
The rest of the parameters in the van der Pol–FitzHugh–Nagu
medium are:b50.5, g52, and values ofk discussed in the text
Empty symbols: Same for the parameter used to quantify sync
nization, as defined in Eq.~3!. Circles: without dynamical noise
Squares: with dynamical noise (n051). The lines are guides to th
eye.
1-2
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BRIEF REPORTS PHYSICAL REVIEW E 65 012901
dynamical noise. The critical impurity fractionxc ~value ofx
at which so steeply increases! for n50.61 and 1 approxi-
mately lies atxc'0.006 and 0.2, respectively, the resu
being almost independent of size, particularly in the form
case, although the sharpness of the transition to the osc
tory phase increases with the size of the network, as ca
noted in Fig. 4 . On theother hand,xc shows no dependenc
on the coupling constantk, as indicated by the results o
Figs. 3 and 4 and other data not shown in the figures~this is
so oncek is beyond a critical value, see@3#!. In fact, xc can
be derived, within a more than reasonable approximat
from a simple mean field approach, according to which
onset will take place when̂n&5(122x)n equalsnc . This
leads toxc50.5(12nc /n), which givesxc50.006 and 0.198
for n50.61 and 1.0, quite compatible with the numeric
results of Figs. 3 and 4. Note that the parameter that cha
terize synchronizationss is significantly smaller forn
50.61 @19#. A plausible explanation for this behavior is th
as for n51.0 the transition occurs at much larger impur
concentrations, clustering is more probable, increasing
difficulty of synchronizing the whole system.

Dynamical noise does not qualitatively change the res
discussed above. Figure 3 shows results forn50.61 andn0
51 @20#. The most noticeable~quantitative! changes are: i!
At x50, so is higher than in the absence of dynamic
noise, although it is still not sufficiently large so as to co
sider the system being in its oscillatory phase, ii! conse-
quently, the transition is less sharp, and, iii! synchronization
is decreased~larger ss). These results are in apparent co
tradiction with several analyses, which indicate that dyna
cal noise increases oscillation and synchronization@4,6,11#.
However, this may be well due to the nonoptimal noise le
that is required for coherent resonance and to the more
vere measures of oscillation and synchronization that
have adopted. Morever, we note that in those studies not
was said about whether the effect survives as the size o
system increases. Preliminary results indicate that in fac
does not, in line with the small increase ofss that dynamical
noise promotes nearx50 and the decrease in synchroniz
tion. In any case the main conclusion of this analysis is t
dynamical noise does not modify the previous result, tha

FIG. 4. Same as Fig. 3 forn561.0. Only results without dy-
namical noise are shown.
01290
r
la-
be

n,
e

l
c-

e

ts

l
-

-
i-

l
e-
e
ng
he
it

t
s,

the dramatic effect that a small number of impurities has
systems near threshold.

A final point concerns the effect of the coupling consta
Results for networks ofL520 and 40,n50.61 and x
50.02, are shown in Fig. 5. It is noted thatso reaches its
maximum ~constant! value for a coupling constant that i
significantly lower for the smaller network. In fact this oc
curs atk'0.45 and 1.7 forL520 and 40, respectively. Thi
is in accordance with the expected behavior~derived from
the diffusive character of the coupling term! discussed
above. The results for the synchronization parameter
similar: to reach the same small levels ofss ~less than 0.5,
say! the coupling constant inL540 should be four times
larger. Despite the usefulness of the scaling trick in num
cal computations, one should recall that in realistic syste
the coupling between elements is typically intensive, that
independent of the system’s size, and it is determined
intrinsic properties. Generally our simulations show th
when the coupling constant is kept fixed, the emergent os
lations and the degree of synchronization are less and
pronounced as the number of constituents is increased.
worsening occurs either when these effects are indu
solely by noise and when they are triggered by diversity,
discussed here. As far as experimental results are conce
the basic point for the synchronous behavior to be obser
is the strength of the effective coupling constant with resp
to the number of elements. Another important feature is
type of interaction. Indeed, it is possible that nondiffusi
couplings may lead more efficient mechanisms of synch
nization.

Summarizing, here we have discussed the possibility
triggering global oscillations in close-to-threshold excitab
media through an arbitrarily weak heterogeneity. The wo
was carried out by assuming the existence of two poss
types of elements in the network, one silent and another c
tinuously active. The results clearly indicate that when
system is near threshold, global~synchronized! oscillations

FIG. 5. Parameters used to quantify the emergence of oscilla
behavior (so) and synchronization (ss) vs couplingk. The results
correspond to a fraction of impurities of 0.02,n50.61, b50.5,
g52 and bidimensional networks of linear size 20 (so empty
circles andss stars! and 40 (so thick continuous line andss dotted
line!. No dynamical noise was included in the calculation. Averag
were done over five realizations of the disordered network.
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emerge for a small number of diverse elements. Dynam
noise does not alter this conclusion, although it may int
duce some significant changes such as a decrease in syn
nization.
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